THE 1,4-CYCLOADDITION OF SINGLET OXYGEN TO 1-VINYLNAPHTHALENES

Masakatsu Matsumoto and Kiyosi Kondo*

Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1

Sagamihara, Kanagawa 229, Japan

(Received in Japan 16 August 1975; received in UK for publication 29 September 1975)

Most styrene-type olefins undergo sensitized photooxygenation to give allylic hydroperoxides when they have extractable allylic hydrogens and/or carbonyl compounds as a result of oxidative double-bond cleavage.¹ The only exceptions hitherto known are certain 1,1-diphenyl-2-methoxyethylenes and indenes which have been reported to give products derived from thermally unstable 1,4-cycloadducts of singlet oxygen ($^{1}O_{2}$) in the photooxygenation.² Whereas some substituted naphthalenes give 1,4-epidioxides in the photooxygenation.³

The sensitized photooxygenation of 1-vinylnaphthalenes, which formally have all the chromophores active in these type of oxygenation, is the first example of obtaining thermally stable 1,4-cycloadducts of ${}^{1}O_{2}$ from an aromatic-extranuclear unsaturation system.

A solution of 2.00 g of <u>trans</u>-1-styrylnaphthalene (<u>1</u>-a) in 70 ml of CCl₄ containing 5 mg of tetraphenylporphine as a sensitizer was irradiated externally with eight 60-W low-pressure sodium vapor lamps (National SOI-60) under an oxygen atmosphere. After 2 hr, an equimolar amount of oxygen was taken up. The reaction mixture was then condensed under reduced pressure, and the residue was chromatographed on silica gel (Wako C-200). Elution with <u>n</u>-hexane-CH₂Cl₂ mixture (2:1) afforded a 1,4-endoperoxide <u>2</u>-a as colorless needles (from a <u>n</u>hexane-CH₂Cl₂ mixture; mp 104.0 - 104.3°) in 55% yield. The NMR spectrum (in CCl₄) of <u>2</u>-a displayed six multiplets centered at $\delta 5.52$ (1H, H_e), 5.77 (1H, H_b), 6.00 (1H, H_c), 6.18 (1H, H_d), 6.43 (1H, H_a), and 7.28 (9H, aromatic): their coupling constants were as follows; J_{ab}= 10.0, J_{ac}= 2.8, J_{bc}= 2.4, J_{bd}= 1.0, J_{cd} = 3.5, J_{ce} = 3.5, and J_{de} = 4.0 Hz. Other physical properties of <u>2</u>-a were as follows; ir (KBr) 3025, 2825, 1645, 1630, 1452, 1079, 1070, 1052, 1040, 918, and 860 cm⁻¹; uv (EtOH) 293 and 243 nm; m/e 262 (M⁺, 22), 244 (26), 233 (22), 230 (24), 215 (16), 157 (33), 128 (32), 105 (100), 77 (56), and 51 (21). Anal. $(C_{18}H_{14}O_2)C$ 82.28, H 5.41. The peroxide <u>2</u>-a is one of possible two stereoisomers in which phenyl and H_c are <u>cis</u> or <u>trans</u> to each other; the structure of <u>2</u>-a was assigned to the configuration illustrated below based on the stereochemistry <u>2</u>-d (<u>vide infra</u>). The formation of peroxides other than <u>2</u>-a was not observed in spite of a careful analysis of the crude photolysate.

A similar irradiation of 1-vinyl- $(\underline{1}-b)$ and 1-(2-methylpropenyl)naphthalene ($\underline{1}-c$) afforded the corresponding 1,4-endoperoxides, $\underline{2}-b^4$ (mp 67 -68°) and $\underline{2}-c$ (oil) in 34 and 78% yields, respectively. The NMR spectral data of these peroxides are collected together with those of other endoperoxides in Table I.

In order to investigate the stereochemistry of the 1,4-cycloaddition of ${}^{1}O_{2}$ to 1-vinylnaphthalenes, the sensitized photooxygenations of <u>trans</u>-1-propenylnaphthalene (<u>1</u>-d) and its <u>cis</u>-isomer <u>1</u>-e⁵ were carried out individually. The olefin <u>1</u>-d gave a peroxide <u>2</u>-d as an oil in 55% yield and not its stereo-isomer <u>2</u>-e; the latter was obtained as colorless granules (from <u>n</u>-hexane; mp 67 - 68°) from the naphthalene <u>1</u>-e in 52% yield, though <u>1</u>-e was less reactive to ${}^{1}O_{2}$ than the isomer <u>1</u>-d. Thus, the 1,4-cycloaddition of ${}^{1}O_{2}$ to 1-vinyl-naphthalenes was found to proceed stereospecifically. Furthermore, by comparing the chemical shifts of the R¹ and R² of the peroxide <u>2</u>-b~e with each other (see Table I), we concluded that the peroxide <u>2</u>-d has an equatorial methyl,

whereas the isomer 2-e has an axial methyl.⁶ This means that the suprafacial attack of l_{0_2} on 1-vinylnaphthalenes might occur.

1,4-Endo-			Chemica	l Shifts.	s in CCl ₄	(Sppm)		`
peroxide	Ha	н _ь	н _с	H _d	R ¹		R ²	
					Н	CH ₃	Н	CH3
<u>2</u> -b	6.34	5.68	5.85	5.93	5.19		4.44	
<u>2</u> -c	6.33	5.70	5.70	5.83		1.51		1.25
<u>2</u> -d	6.32	5.71	5.75	5.89		1.51	4.55	
<u>2</u> -e	6.31	5.67	5.73	5.78	5.13			1.21

Table I. NMR Spectral Data for 1,4-Endoperoxides (2)

When 1-isopropenylnaphthalene $(\underline{1}-f)$ was photooxygenated much as in the cases described above, no corresponding 1,4-endoperoxide was obtained, but 2-(1-naphthyl)-2-propenyl hydroperoxide $(\underline{3}-f)$ was obtained in 90% yield; colorless oil, NMR (CCl₄) δ 4.61 (s with fine coupling, 2H, CH₂O), 5.22 and 5.59 (two m, 2H, olefinic CH₂), 7.1 - 8.0 (m, 7H, aromatic), and 8.18 (s, 1H, OOH). The sensitized photooxygenation of 1-(1-cyclopenten-1-yl)- ($\underline{1}$ -g) and 1-(1-cyclopenten-1-yl)naphthalene ($\underline{1}$ -h) also gave the corresponding allylic hydroperoxides, $\underline{3}$ -g and $\underline{3}$ -h, respectively, in yields of more than 90%. Scarecely no oxidation of 1-(1-phenylvinyl)naphthalene ($\underline{1}$ -i) with ${}^{1}O_{2}$ occured. Thus, in 1-vinylnaphthalenes, the α -substituent on the side chain seemed to inhibit the 1,4-cycloaddition of ${}^{1}O_{2}$ to the aromatic-extranúclear unsaturation system.

3

f: R = H g: R = $-(CH_2)_2$ h: R = $-(CH_2)_3$ - The sensitized photooxygenation of the other vinyl-substituted polynuclear aromatic hydrocarbons, such as 2-vinylnaphthalenes and 9-vinylphenanthrenes, is now being studied and will be the subject of forthcoming communications.

References and Notes

- For a review, see R. W. Denny and A. Nickon, "Organic Reactions," Vol. 20, John Wiley & Sons, New York, N. Y., 1973, p 133.
- C. S. Foote, S. Mazur, P. A. Burns, and D. Lerdal, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 586 (1973).
- 3. a) P. -S. Song and T. A. Moore, <u>ibid</u>., <u>90</u>, 6507 (1968),
 b) J. Rigaudy, <u>Pure Appl. Chem.</u>, <u>16</u>, 169 (1968).
- All the endoperoxides obtained in this work gave satisfactory analytical data.
- 5. The olefin <u>1</u>-e was prepared by the stereospecific hydrogenation of 1-(1-propynyl)naphthalene with a Lindlar catalyst and was purified by fractional distillation (bp 82°/0.3 mm).
- 6. It is a well-known fact that, in the NMR spectrum, an equatorial proton is consistently found further down field by 0.1 - 0.7 ppm than the axial proton on the same carbon atom in a rigid six-membered ring; a) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis," John Wiley & Sons, New York, N. Y., 1965, b) R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds." John Wiley & Sons, New York, N. Y., 1967. This is also true in the case of a sixmembered cyclic peroxide; R. W. Murray, P. R. Story, and M. L. Kaplan, J. Amer. Chem. Soc., 88, 526 (1966).